

A multi-layer model for incident reporting systems

J. Paries & A.Merritt
DÈdale Company, France
M. Schmidlin
Airbus Industrie

Third GAIN World Conference
November 3-5, 1998
Long Beach Hilton
Long Beach, California

Context and objectives

i 1997: DGAC call for tender...

i ... to ëdesign a rigorous methodology to analyse operational incidents, with the purpose of using it for an incident reporting & analysis systemí

i Airbus & DÈdale selected

i One year study

Methodology

Concepts

AIRS
BASIS
(HFR)

Review of existing systems (SIAM)

innovative model

Field study (AIRS)

Third GAIN World Conference, November 3-5, 1998

Lessons from the ëfieldí

- i All actors in the system agree there is a strong need for well-designed incident reporting
- i Human factors capability must be an integral part of the incident reporting system
- i Keywords must be unambiguous, and easily used by a wide variety of safety specialists.
- i Inter-rater reliability is an important issue if cross-fleet and cross-industry trends are to be detected.

Lessons from the ëfieldí

- i The system should be extended beyond pilots to include all employee groups whose work impacts safety.
- i Greater effort must now be given to the analysis of the reports. Quantity of input should be balanced by quality of output.
- i A protocol is needed to ensure that ordered information is sent to relevant others in a timely fashion (analysts' reports become inputs for other analysts).

Prioritization criteria

- i incident recurrence probability
- i potential accident severity
- i potential accident proximity(remaining protections)
- i importance of the potentialësafety lessoní

BASIS risk matrix

Severity of damage

High

Medium

Low

Medium	High	severe
risk	risk	risk
Low	Medium	High
risk	risk	risk
Minimal	Low	Medium
risk	risk	risk

Low

Medium

High probability of ocurrence

Simplification strategies

- i ëTypicalí accident
- i Scale of damage
- i Accident proximity

The Pentium illusion

This is not an incident processing system

i Greater effort must now be given to the analysis of the reports.

Improvement areas

- i clarify causality levels
- i improve reporting sheet
- i improve the analysis protocol
- i organize a multilayer communication pattern

Causality levels

safety analysis

How could this happen?

(systemic) causality

Why?

incident scenario

What?

Who?

When?

Reporting sheet format

- i the event scenario: what happened?
- i the ësystemis safety behaviouri: what helped/hindered (environment, company policies, procedures, crew or other personnel, A/C design, ...)?
- i your estimation of the risk
- i who should read this and why?

AIRS causality model

Personal influences

Environmental influences

Keywords

ïpositive ïnÈgative

Organisation influences

yformational influences

Clarify safety reasonning

Before the event:

Why was the system supposed to be ësafei?
Identify the ësafety principlesí

After the event:

What appears to be challenged? What failed? What allowed recovery?

What failed?

```
The substitution test: what if we change ...
```

ñ the crew

ñ the aircraft

ñ the airport

ñ ATC

ñ the procedure

ñ the context...?

Safety principles

- ï Philosophies
- ï Policies
- i Regulations, rules
- i Procedures
- i Rules of thumb
- i Assumptions about:
 - ñ organizations
 - ñ teams
 - ñ individuals

Normative safety

Safety through specifications

- i safe processes can be specified (rules, procedures)
- i (good) profesionals adhere to specifications
- i Unsafe situations result from deviations:

ñ voluntary: violations

ñ involuntary: errors

Beyond normative safety

Information pattern: a multi-layer protocol

To ensure that ordered information is sent to relevant others in a timely fashion (analysts' reports become inputs for other analysts).

Conclusions

- i Develop number and quality of reports (confidentiality, reporting sheet, feed back)
- i Develop prioritization strategies (typical accident, scale of damage)
- i Calibrate analystsí interpretation (keywords)
- i Clarify safety reasoning (safety principles)
- i Organize a multi-layer communication protocol